A characterization for bishop equations of parallel curves according to Bishop Frame in E³
نویسندگان
چکیده
منابع مشابه
ASSOCIATED CURVES OF THE SPACELIKE CURVE VIA THE BISHOP FRAME OF TYPE-2 IN E₁³
The objective of the study in this paper is to define M₁,M₂-direction curves and M₁,M₂-donor curves of the spacelike curve γ via the Bishop frame of type-2 in E₁³. We obtained the necessary and sufficient conditions when the associated curves to be slant helices and general helices via the Bishop frame of type-2 in E₁³. After defining the spherical indicatrices of the associated curves, we obta...
متن کاملA Bishop surface with a vanishing Bishop invariant
We derive a complete set of invariants for a formal Bishop surface near a point of complex tangent with a vanishing Bishop invariant under the action of formal transformations. We prove that the modular space of Bishop surfaces with a vanishing Bishop invariant and with a fixed Moser invariant s < ∞ is of infinite dimension. We also prove that the equivalence class of the germ of a generic real...
متن کاملOn the Curvatures of Tubular Surface with Bishop Frame
A canal surface is the envelope of a moving sphere with varying radius, defined by the trajectory C(t) (spine curve) of its center and a radius function r(t) and it is parametrized through Frenet frame of the spine curve C(t). If the radius function r(t) = r is a constant, then the canal surface is called a tube or tubular surface. In this work, we investigate tubular surface with Bishop frame ...
متن کاملThe Mergelyan-Bishop Theorem
We define the differential operator ∂ ∂z on infinitely differentiable functions (also called smooth or C∞ functions) on some open set in C by ∂ ∂z = 1 2 ( ∂ ∂x + i ∂ ∂y ). A quick calculation shows that ∂ ∂z obeys the product rule. Recall that a function f is holomorphic if and only if ∂ ∂z (f) = 0. A function is biholomorphic, or an analytic isomorphism, if it is holomorphic and has holomorphi...
متن کاملBishop-Phelps type Theorem for Normed Cones
In this paper the notion of support points of convex sets in normed cones is introduced and it is shown that in a continuous normed cone, under the appropriate conditions, the set of support points of a bounded Scott-closed convex set is nonempty. We also present a Bishop-Phelps type Theorem for normed cones.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boletim da Sociedade Paranaense de Matemática
سال: 2013
ISSN: 2175-1188,0037-8712
DOI: 10.5269/bspm.v33i1.21712